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SYMBOLS 

L? 

x 
U 

A @  

6U 4 

6 2  

3! 
P 

f 

. H  

H@ 

Distributed series resistance 

Distributed shunt capacitance 

Distributed series inductance 

Distributed line voltage 

Distributed line current 

Length of the line 

Equation of constraint 

Criterion functional 

Optimal criterion functional 

Line phasor voltage 

Line phasor current 

Adjoint system of variables 
corresponding to $I correction 

Adjoint system of variables 
corresponding to Q correction 

' 4  component of the variation in 
control variable u 

L? component of the variation in 
control variable u 

Fundamental matrix of system equations 

Fundamental matrix of adjoint equations 
d 

f = z Y  

Inner product of A and f vectors 

Hamiltonian, H = < X , f >  

Hamiltonian corresponding t o  A @  system 



HQ 

Hu 

Sgn 

L . H . S .  

R . H . S .  

Hamiltonian corresponding to. A' system 

Partial differential operation 

Hu 

Sign 

Left hand side 

Right hand side 

Superscript t denotes transpose operation. 

AC 

DC 

Analog computer 

Digital Computer 

ADC Analog to Digital converter 

DAC Digital to Analog converter 
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A B S  T R A C T  

A technique is developed for  the synthesis and 

design of a distribuged parameter system guiding waves 

from one point in space to another. The paraneter 

distributions are assumed to be unrestricted except 

for the upper and lower bounds resul%ing from the 

imposition of physical realizability. The problem is 

similar to the "sensitivity" problem encountered in 

the optimal control of the systems. An improved version 

of the First Order Gradient Technique is used to obtain 

the optimal distributions of the parameters. The First 

Order Gradient Technique is sensitive to the form of 

the arbitrary distributions assumed at the start of 

the iterations, This technique has serious convergence 

problems associated with it, The problem is particularly 

severe and is encountered in the %ingular8* optimal 

control problems, The algorithm devised here improves 

the First Order Gradient Technique so that it becomes. 

less sensitive to the initial assumed distributions 

and virtually eliminates the convergence problems 

generated because of tha bounds onathe parameter distri- 

I 

butions , 
A transmission line with distributed series r 

- shunt c is a particular: case of the distributed . 

parameter system, The optimal design of a feedback 
* 



network, for a phase-shift oscilltor, employing thin 

film circuit is a successful example of the application 

of the Improved Gradient Technique. These distributions 

have been obtained by the use of a Hybrid Computer. 



INTRODUCTION 

The design of a feedback network for a phase shift 

oscillator has been a topic of a number of studies. As shown 

in a very basic block diagram (Fig. l)', the frequency sensi- 

tive feedback circuit has to provide a proper gain and phase 

shift relationship so that the system may oscillate. 

Assuming that the amplifier has phase-shift of 180 degrees, 

the feedback circuit has to provide an additional 180 degree 

phase shift in order to get the conditions for oscillation. 

One other usual requirement of the feedback circuit is,that 

the attenuation during the transmission of the signal should 

be minimum, since the total gain around the Ioop should be 

unity. This lowers the gain requirements of the amplifiey. 

EEDBACK C I R C U I T  

. Fig. 1 
, 

A three section lumped parameter uniform resistance 
1 capacitance network producing 180 degree phase-shift gives 

an attenuation of 29. 

Fig. 2 gives, in the limit, the attenuation of 8 as K tends 

to infinity. He also showed that a uniformly distributed- 

Johnson2 has shown that the circuit in 

, 

series r, parallel c-network would produce an attenuation of 

11.6. Increasing the number of sections in the lumped para- 
/ 
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meter circuit helps to reduce the attenuation. A limiting 

3 case is obviously a distributed rc transmission line. Edson 

finds that "unfortunately, the analysis of multiple-section 

lumped networks is exceedingly complicated and tedious .... 
It is found that useful inferences may be drawn from the 

limiting case in which the number of sections becomes infinite 

and the network becomes a smoothly tapered tr-ansmission line". 

He assumed the exponential variation of the parameters corre-- 

sponding to 
+2kx r(x) = Re- 

r ix) [ ( X I  

s k x  c(x) = Ce 

'irl R(x) = 0 

Fig. 3 

Edson obtained the curves for attenuation at 180 degree phase- 

shift as a function of parameters R , C ,  taper k and line 

length L. It can be easily shown that as k approaches infinity 

the attenuation approaches unity. - 

With the advent of thin-film circuits the distributed 
/ 
parameter RC line ceases to be just a limiting case of n 

lumped RC circuits. Thin film circuits are replacing the 
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lumped components due to the requirements of (1) microminia- 

turization and ( 2 )  modular construction. 

A number of materials have been used for thin film 

resistors, such as vacuum deposited nichrome, sputtered tan- 

talum, vacuum deposited metal oxides, etc. Thin-film capa- 

citors are fabricated by evaporating a high dielectric material 

onto a resistive path and covering it with another layer of 

conductive film. The dielectric layer may be formed by oxi- 

dizing the resistance layer. These techniques enable us to 

realize a wide range of resistance and capacitance values per 

unit length. This can be achieved by controlling the physical 

dimensions of the films. 

Since distributed networks are used extensively in micro- 

circuitry and there is a definite possibility of shaping the 

distributions so as to optimize the performance of the system 

in which they are used, the need for developing a technique 

for such synthesis is apparent. So far, in the field of 

feedback oscillator circuits, the trend has been to assume 

certain form of distributions, such as exponentials, and 

analyze the circuit. 
\ 

The present study keeps the form of the distributions 

completely free except for the upper and lower bounds resulting 

from the physical realizability and tries to obtain optimum 

distributions of parameters which optimize the specified 

criterion, viz. minimum attenuation at 180 degree phase shift. 
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MATHEMATICAL FORMULATION OF THE OSCILLATOR PROBLEM 

The general statement of the problem is as follows: 

Find the distributions r(x) and c(x) [with reference to 

Fig. 31 such that at a given frequency (1) there exists 

desired phase shift between the input and output, and (2) the 

attenuation is minimum. The distributed inductance R(x) is 

considered to be a non-controllable quantity. 

For lumped parameter circuits the system equations gov- 

erning voltage and current relationships are differential 

equations in time with constant coefficients. For a distributed 

parameter system they become partial differential equations 

in time and space with coefficients being functions of space, 

[referring to Fig. 41. 

Fig. 4 
... 

The driving function v(0,t) is assumed to be a co-sinusoidal 

input at a frequency w. Linearity and the time invariance of 

parameters r, c, and R assure the presence of only one fre- 
/ 
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quency ' u ' .  Thus we can assume a steady state solution of 

'the form 

v(x,t) = a(x) cos (ut+9) = Vl(x) cos ut + V2(x) sin ut (2.3) 

= 1 (x) cos ut + 12(x) sin ut ( 2 - 4 )  1 i(x,t) 

v2 (x) 
v1 (x) where 9 = tan-' specifies the phase angle of the 

voltage as a function of x, and a(x) = (V12(x) + V22(x)] 272 

gives the amplitude of the voltage along the line. 

Substituting this solution into the equation (2.1) and 

(2.2) we obtain time independent state equations 

C- dx v 1 (x) = -r(x)Il(x,w) - wR(x)12(x,w) = fl 

d - dx V 2 (x) = -r(x)12(x,w) + uR(x)Il(x,w) = f2 

d 
(2.5) 

- dx I 1 (x) = -wc(x)V2(x) = f3 

- I (x) = WC(X)Vl(X) = f4 d 
dx 2 

At this stage we will make two assumptions, (1) output 
, 

impedance of the amplifier [source impedance at the input of 

the line] is zero and ( 2 )  input impedance of the amplifier 

[load impedance on the line] is infinite. 

Without any loss of generality the input conditions of 

the line could be specified as 

V1(0) = a , a > 0 
0 

V2(0) = 0 
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The open circuit at the output end of the line implies 

I1(IJ) = 1 2 ( L )  = 0 . (2-7) 

The two conditions given above get slightly modified for 

a non-zero amplifier output impedance and finite amplifier 

input impedance. 
/ 

The 180 degree phase shift requirement is translated as 

V2(L) = 0 

Equation (2.8) assures a phase shift of IT,  IT,   IT, ... 
Since the minimum attenuation is the same as the maximum gain 

we need to maximize $ ,  

with a ( x )  as defined in ( 2 . 3 )  

Since V2(D)  = V 2 ( L )  = 0 

becomes 

max Q, = max 

The general form of the 

Fig. 5. 

4 
Y,tx> h 

. 

and V1(0) = a, the criterion 

solution will be as shown in 

(2.10) 

Fig. 5 



The attenuation increases as the signal travels along the 

Thus there is no possibility of attenuation at phase line. 

shift of 3n, 5n ... being smaller than that at n. We can 

safely restrict our considerations to the phase shift of n ,  

or the first zero of V2(x). 

The boundary conditions (2.6) and ( 2 . 7 )  require solving 

a two point boundary value problem, since the voltage is 

specified at one end an6 the current at the other end. It is 

possible to avoid mixed boundary conditions by specifying the 

voltage at x=L. 

If the conditions are specified as V, (L) = a, V,(L) = 0, 
I 

from (2.9) it is apparent that, with 
L 

max 4 = min I v ~ ( o )  1 . 

I Fig. 5a 

Fig.5a gives a general form of the solution. For a>O, 

Vl(x=O)<O. This implies that 

max 4 = max V1(0) . (2.11) 
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Now we can define the problem using control system 

terminology; Define the 4-vector 

Yt = [V1,V2,Il,I2I * 

The system equations are given by 

The matrix A(u(x)) is defined by (2.5) and u(x) is a two-vector 
t defined by u (x) = [r(x) ,c(x)]. The inductance R(x) is assumed 

to be a non-controllable parameter. The endpoint boundary 

conditions are 

(2.13) t y (x=L) = [a,O,O,Ol 
. 

with L fixed; and the rigid constraint R is given by 

!d[y(x=O)I = y2(0) = 0. (2.14) 

Our task is to obtain r and c distributions that maximize 

9, where 
9 = Y1(0). (2.15) 

We also assume that the limitations in fabrication require 

that the values of resistance and capacitance per unit length 

be within finite upper and lower bounds. This gives rise to 

the inequality constraints on the control variables r and c. 

(2.16) 
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METHODS OF SOLUTION 

A. Hamilton-Jacobi Equations via Dynamic Programming: 

This was tried as a possible approach. It is presented 

here to give some idea about the complexity involved in the 

numerical solutions of the two point boundary value problem 

one may face in using techniques that lead to a set of 

necessary conditions for optimality. 

Let us define a new independent variable 

z = L - x .  (3 1) 

The state equation which was the same as (2.3.2) now becomes 

and the end point conditions specified in (2.11) now become 

initial conditions 
~ 

y(z=O) = yL = yo, (3.3) 

With the criterion function as @ = @ (y(z=L) ) we have a 

Mayer formulation of the variational problem. EZellman and 

Dreyfus' have used a heuristic approach that is very revealing. 
\ 

The optimal payoff function as designated by J, is an implicit 

function of the initial state yo = y(z,) and the length of the 

process 

s = L - Z , ,  (3.4) 

The optimal payoff J is defined by 

E$(y(L)  1 . - ..- . (3.5) max * 

c- U 
J = J(yo,s) = 
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The opt imal  v e c t o r  u*(z)  and t h e  opt imal  s ta te  v e c t o r  y*(z)  a l l  

depend on y o  and s. Consider a d i s t a n c e  Az along t h e  opt imal  

t r a j e c t o r y  as shown i n  F ig .  6 .  

The t r a j e c t o r y  for nonoptirnal u i s  also shown. Along t h e  

optimum pa th ,  

J (yo ,s) = J (y* ( z ~ + A z ) ~ ~ - A z )  , ( 3 . 6 )  

along t h e  optimum p a t h ,  no m a t t e r  (L) s i n c e  w e  w i l l  end up a t  y* 

where w e  s ta r t  from. 

I f  w e  t a k e  an a r b i t r a r y  u from z o  t o  z +Az and an opt imal  0 

u=u* from zo+Az t o  L then t h e  payoff func t ion  will be  

J (y ( zo+AZ),s-Az) . \. 

Thus , 
(3.7) max J ( y o i S )  = U [ J (y ( z0+Az) , S-Az]  . 

Expanding t h e  r i g h t  s i d e  i n  a Taylor series and neg lec t ing  

second and h igher  order  t e r m s ,  
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d Ayj = - y.Az . 
dz 3 

(3.9) 

d The term on the right side which depends on u is yi(zo). 

Hence we take all the other terms outside of the bracket and 

divide by Az. Taking the limit as Az+O we obtain 

(3.10) 

In (3.6) the maximization was to be carried out over the inter- 

val z o  to zo+Az. ‘With Az+O the control vector becomes just 

u(zo) 

The partial differential equation (3.10) is true for any 

z along the trajectory and the corresponding duration s, Thus, 
- 

(3.11) 

This is a Hamilton-Jacobi equation. 

For our case y is a 4-vector and u is a 2-vector, 

ut = [r(z) ,c(z) 1 .  We can incorporate the constraint (2.14) 

into the criterion function by means of a Lagrange multiplier 

p and write a new payoff function, 
\. 

= yl(z=L) + y y2(z=L). (3.12) 

In order to solve (3.7) numerically, we have to discretize 

it in z. 

and then for u(zo+Az) , assuming u(z ) to be constant from z 

z +Az, and so on. 

five dimensional space [y1,y2,y3,y4,s]. 

A s  a first step we have to obtain solution of u(z,) 

to 

This becomes a problem of grid formation* in 
0 0 

0 
The undetermined 

/ 

Lagrange multiplier p is an unknown quantity that has to be 

determined by trial and error. - - - _. -- -- - - -________ 
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No attempt was made to obtain the numerical solutions 

using this approach. 

B. Pontryagin's Maximum Principle: 

The maximum Principle will yield a set of necessary con- 

ditions that the optimal control u* has to satisfy if such 

control exists, and if it optimizes the criterion function. 

Given the system equations (restatement of (3.2) and (3.3), 

( 3  . 13) d Y(Z) = - A(u(z))y(z) , 
with boundary conditions 

the Maximum Principle states that in order that the trajectory 

y(z) be optimal in the sense that the criterion function is 

maximized it is necessary that one can find functions X(z), 

defined as the adjoint variables, satisfying the following 

properties, 

i) the X satisfy the differential equations, 
j 

d Xj +'I 4 d  [- fi(y*(Z),~*(~))]Xi(~) = 0 (3.15) 
i=l dYj 

where u is arbitrary, nonoptimal 2-vector, then 

E(u*(z)) 2 E(u(z)) for all z and admissible u. 
(3.16) 



At this stage we may introduce the Hamiltonian, 

4 -  

j= l  
H ( y r u , U  = 1 Ajfj(Y,U) (3.17) 

Thus, in terms of the Hamiltonian the Maximum Principle states 

that, .given 

d t 
Z Y  = (3 .18)  

d t 
dz Y 
- A  = - H  

in order Ynat y(z) maximizes the criterion function it is 

necessary that 

. 
where G is any constant admissible control vector. 

A l s o  the adjoint variables have to satisfy the transver- 

sality condition at z=L 

an - a 4  
X j ( L )  - .  - - 1-I- 1 aY j aY j (3.20)  

where 4 is the criterion function, R is the boundary constraint 

and 1-1 is the undetermined Lagrange Multiplier. 

Coming back to our system of equations, 

d Z Y  = - A Y  

d - X = AtA dz 

= [~,O,O,OI 

(3 .21)  
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With the inequality constraint (2.16) on the control, (3.19) 

gets transformed into 

- > o  aH 
auxi 

- = ( )  aH 
aUxi 

- < o  aH 
au*i 

if u* = U i imax 

imin if Uimax > u*i > u 

if u * ~  = U imin 

(3.22) 

and the constraining equation 

Equations (3.21) to (3.23) comprise a self-sufficient set 

of equations, which, when solved will yield the optimal con- 

trol u*(z). This is a two point boundary value problem. 

Since A(u(z)) is linear in u, H turns out to be linear 

in u. 

(3.24) 

Thus (3.19) suggests a bang bang control, In other words, 
\ 

we are tempted to believe that ui will always be at either 

boundary and will switch whenever Hu changes sign. 
i 

Assuming such a bang bang form of the control, a combi- 

nation of iterations and scanning ( fo r  11) was used to find a 

sclution, The iterations did not converge. 'The solutions 

obtained by gradient technique which is described later, 

indicate-that the assumption regarding the form of the control 

was erroneous. It does not turn out to be a bang bang control. 
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(One way of circumventing the problem of linearity is by 

adding to the criterion function a penalizing functional7 that 

is nonlinear in control). 

As Johnson and Gibson4 have pointed out, it is character- 

istic of the solutions to linear optimization problems that 

the switching function H, 

over some finite interval of ' z ' .  Since, during this interval, 

sometimes becomes identically zero 
i 

H does not depend upon u explicitly, the usual procedure of 

selecting u* so as to maximize H breaks down. These linear 

optimization problems where H becomes identically zero over 
ui 

finite interval have been referred to as "singular". It has 

been shown that the optimal control may actually consist of . 
intervals of variable control effort (called "singular switching 

curves") combined with intervals of limiting control. 

Thus, there seems to be a distinct possibility of the 

optimal control being a limiting control with singular curves 

rather than a bang bang control with switching points. 

C. Gradient Technique5 : 

The approaches described so far are based on obtaining a 

set of necessary conditions for the optimality and then trying 

to get solutions to this set of equations. The necessary 

condition may be a partial differential equation as in the case 

of the Hamilton-Jacobi equation or a set of differential- 

equations with mixed boundary conditions as for the Maximum 

/Principle. The approximate solutions to these equations may 

not lie in the neighborhood of the desired solution and thus 
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may not yield any useful information. 

The alternate approach is to seek stepwise gradual improve- 

ment in the criterion function. The method is known as "Gradient 

Technique", "Hill Climbing Technique", or "relaxation method" 

Here one assumes an arbitrary non-optimal solution and seeks 

a stepwise improvement in the direction of the optimum. Thus, 

the new solution generated at every step of the iteration is 

an improvement over the previous one and the process hopefully 

converges. 

Specifically, we seek to obtain a functional relationship 

between variations in the criterion function and variations 

in the control vector u. This defines the desired variation 

in u in order to achieve improvement in Cp and yields a self- 

sufficient iteration procedure. 

Referring to the set of equations (2.5) we have 

Consider a small perturbation in the control variable u. 

With new control as u+6u and resulting trajectories as y+6y 

the resulting first order variational equations are given by, 
\ 

i.e. 

d 
dx 
- = A6y + Auy6u I 

(3.22) 

/ A u  denotes the partial differentiation of the 'A' matrix with 

reference to the subscripted variable. 

( 3  23)  
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Define a set of adjoint variables by the differential 

equations, 

(3.24) 

The system equations are linear in y. Under such circum- 

stances the adjoint equations will always be reduced to a 

form 

Before illustrating the function of the adjoint variables, we 

can discuss their form. 

From (2.12) and (3.25) one can derive the relationship 
.- - _ -  

! 

(Xty) = 0 dx (3.26) 
- - - -  . _ .  

i.e. the inner product of X and y remains constant for all x. 

This implies, 

. Xt(o)y(o) = Xt(L)Y(L) (3.27) 

In terms of fundamental matrices $(XI and y(x )  , where 

the relationship (3 .27)  yields 

$(x) = W ( X )  ( 3 . 3 0 )  

Hence, if the solutions to (2 .5)  are known in terms of the 

fundamental matrix Q, the solutions for the adjoint equations 

can be obtained as / 
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without solving (3 .25)  . 
Also for certain forms of matrix A there exists a simple 

linear transformation of the type 

y ( x )  = BA(x) (3.31) 

where B is a nonsingular constant matrix, such that with this 

transformation the adjoint equations 

d t - A  = - A A  dx 

become 

With the change of variable as 

2 = L - x  

the equations reduce to 

(3.32) 

(3  * 33) 

This equation has a form identical to ' ( 2 . 1 2 ) .  

formed adjoint variables y ( z )  are solutions of the system 

Thus the trans- 

equations with the reversal of the space variable. The 'A' 

matrix, as defined by (2 .5)  and (2 .12) ,  possesses the above 

properties. We will consider the corresponding B matrix and 

x .  

the significance of the property mentioned above later,when 

we will get to the stage of obtaining the numerical solutions 

to the system and the adjoint equations. 

Multiplying (3.22) by Ai, (3 .24)  by 6yi, adding them 
. _.-,-, - 

1 together.and performing summation over if we get 
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cif 

6uk [chiGyil = c c A .  - 1 GUk a Z i  i k  

Define 

H = <X,f> = X i f i  , 
i' 

Then, integrating (3.34) from x=O to x=L, 

L 
[Chi6yiIL = l HU6udx . 

0 0 

Since y(L) is completely specified by (2,131, 

6y(L) = 0 . 
Here we can define A' and A n  as the adjoint system variables 

satisfying (3.25) subject to boundary conditions, 
L 

Cp aCp 
a [yi ( 0 )  I hi (0)  = - 

and 
an 

a [yi ( 0 )  1 A! (0 )  = - 

(3.34)c'  

( 3 . 3 5 )  

(3.36) 

respectively. 

When Cp is given by (2.15), equation (3.36) becomes 

t A 0 1  = E-l,,o,O,OI . 
Similarly, when $2 is given by (2.14), equation (3.37) becomes 

t A'(0) = [O,-l,O,Ol . 
Now we can define 

€8 = <#,f> 

H' = <h',f> . 
Substituting (3.36) into (3.35) , we obtain 

(3.37) 

6Cp = ! LCp HU Gudx . 
0 

' (3.38) 



: Similqrly, substituting ( 3 . 3 7 )  into (3.35) I we obtain 

Equations ( 3 . 3 8 )  and ( 3 . 3 9 )  give the functional relationship 

between variation in control, and change in criterion function 

and constraint in response to it. 

The initial arbitrary nonoptinal choice of u or the sub- 

sequent estimates of u during iteration process may not exactly 

satisfy the constraint O=O. Therefore, at every stage there 

are two variations required. 

(i) Change d@ in order to improve the criterion function. 

(ii) Change dO=-O in order to satisfy the constraining 

equation. 

Noting that 6u is a function of 'x' one realizes that 

( 3 . 3 7 )  and ( 3 . 3 8 )  can have infinity of solutions. Hence we 

stipulate an arbitrary criterion function 1/2 IL 6utW6udx 

which has to be minimized while satisfying ( 3 . 3 0 )  and ( 3 . 3 9 ) .  
0 

This (i) eliminates the singular problem since the criterion 

is quadratic in control, and (ii) keeps the variation 8u to 

a minimum (in Euclidian norm sense). This is desirable since 

the derivations are based on a small perturbation. 
\. 

We have to find 6u that minimizes the composite criterion 

function 
$ = 1/2 IL 6utW6udx + vo[d@-Z L @  Hu6udx] + v'[dO-l L R  HU6udx], 

0 0 0 

(3.40) 

where vo and V~ are undetermined Lagrange multipliers, to be 

chosen so as to satisfy ( 3 . 3 8 )  and ( 3 . 3 9 ) .  
/ 
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Eule r  Lagrange equat ions  g i v e  

6u = W-'[vbHtt  + v n HU Qt] 

Defining 

6u@ = 

Bus2 = 

wi th  

Bu = 

-1 n t  
HU I 

n n  
V%U@ + v 6u 

(3.41a) 

(3.41b) 

(3.42) 

S u b s t i t u t i n g  f o r  6u i n  (3.38) and (3.33) w e  g e t  
--. 

d$ = v b  J HU6u 4 b  dx + vn J HUGu dx (3.43) 

(3.44) a 4  n n  dS2 = v b  J HUBu dx + vn J Hu6u dx 

The ' i t e r a t i o n  algori thm is  f a i r l y  s t r a igh t fo rward  and 

proceeds as fol lows.  

I.) Assume a nominal c o n t r o l  u. Solve system equat ions  

( 2 . 1 2 )  wi th  boundary condi t ions  ( 2 . 1 3 )  . 
\ >  

2)  Solve t h e  a d j o i n t  equat ions  (3.25) : (i) with boundary 

condi t ion  (3.36) t o  o b t a i n  X 4 (x)  and (ii) wi th  boundary con- 

n d i t i o n  (3.37) t o  o b t a i n  h (x)  . 
3) 

4 )  

Evaluate 6u9 and B u n  from (3.41a) and (3.41b) ,  with W-' given.'  

Solve (3.43) and ( 3 . 4 4 )  f o r  v 4  and v . n **  

5) Evaluate  8u from (3.42) .  

6 )  Add Bu t o  u & obta in  r ev i sed  estimate f o r  c o n t r o l  as '  

W-' i s  chosen based on knowledge of t h e  system, & could be made 
* 
equal  t o  t h e  u n i t y  matr ix .  . 
, 

t t  d@ E, dS2 must be chosen beforehand. d$ i s  cho'sen f o r  convergence & dS2 
t o  s a t i s f y  t h e  c o n s t r a i n t  equat ion (2.14-). 
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u + 6u. The i n e q u a l i t y  c o n s t r a i n t s  on u are taken i n t o  account 

by t r u n c a t i n g  (u+6u) a t  uk o r  urn wherever it crosses t h e  

bounds. The v a l i d i t y  of t r u n c a t i o n  i n  connection with conver- 

gence can be  proven fo r  4 or  Q c o r r e c t i o n  sepa ra t e ly .  ( R e f e r  

Appendix B) Now branch back t o  t h e  s t a r t  of t h e  loop f o r  t h e  

next  i t e r a t i o n  cycle .  
4 n The v a r i a t i o n  u ( x )  has  t w o  components 6u (x) and 6u (x) 

and t h e i r  p ropor t ion  i n  forming 6u i s  decided by t w o  scalar 

c o e f f i c i e n t s  ucp and u'. But suppose w e  have only one c r i te r ion  

func t ion  Cp and no c o n s t r a i n t .  Then ( 3 . 4 3 )  w i l l  be transformed 

i n t o  

c p c p  6u = v 6u 

n and vb can be obta ined  from ( 3 . 4 3 )  by s e t t i n g  6u = 0. 

There are two-aspec ts .  o f  t he  form of 6u which. w e  can con t ro l :  

1. The shape of the  v a r i a t i o n  i n  u ( x )  ; 6u and 6u . 4 n 

2.  The amount of v a r i a t i o n  o r  t h e  s t e p  s i z e  which 
n i s  cons t an t  f o r  all x;  vcp and u . 

Equation ( 3 . 4 1 )  g ives  t h e  shape of 6u(x) as 

cp 1 o t  6u (x)  = w- KU 

and vcp i s  t h e  s t e p  s i z e .  

Thus i n s t e a d  of viewing W(x) as a weighting f a c t o r  f o r  

an a r b i t r a r y  c r i t e r i o n  func t ion  w e  can choose W-l(x) as a 

shaping. factor and o b t a i n  t h e  corresponding s t e p  s i z e  d i r e c t l y  

from ( 3 . 3 8 ) .  

L e t  u s  cons ider  an analogy from t h e  f i e l d  of ca lcu lus .  

L e t  t h e  c r i t e r i o n  func t ion  Cp which has  t o  be minimized be 
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a function of two independent variables x and x2. 1 

(3 .45 )  

Hence the first order variational equation is 

where Q, and Q,x 

to x and x2 respectively. 

are partial differentials of @ with respect 
x1 2 

1 
For a given d@ we can find non-unique values of 6x1 and 

6x2. 

is obtained when we seek a variation [6xll6x21 that (i) mini- 

mizes 

An additional constraint that removes the non-uniqueness 

1/2 II6xlI2 = 1/2 (6x12 + 6X2*), (3.47) . 
and (ii) satisfies (3.46). 

The composite criterion function for this accessory mini- 

mization problem can be written down (Refer (3.40)). 

1/2 (6x12 + 6 ~ ~ ~ )  + v[d@ - ( @  6~ +$ 6x2)] 
Xl 1 x, 

Y =  

The conditions for 
I L. 

stationarity of + yield 

Substituting this back into (3.46) 

In equation (3.48) the gradient 

x ) space and v is the step (xlf 2 

gives the direction in 

size. 

(3.48) 
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Refer r ing  back t o  t h e  problem of t h e  c a l c u l u s  of v a r i a t i o n s ,  

i f  w e  l e t  W'l = i d e n t i t y  matrix,  6u 0 i n  equat ion  (3.41) is  

t h e  ' g r a d i e n t '  of @ a t  any x. W e  can c a l l  t h i s  func t ion  a 'shape'  

of t h e  v a r i a t i o n  t h a t  s p e c i f i e s  t h e  ' d i r e c t i o n '  i n  y space 

a t  a l l  'XI.. The cons t an t  v@ i n  (3.42) i s  comparable t o  t h e  

s t e p  s i z e  v i n  t h e  above example. 

Thus, t h e  sepa ra t ion  of t h e  v a r i a t i o n  i n  c o n t r o l  as a 

'shape f a c t o r '  6u0 and a s t e p  s i z e  v9 i s  comparable t o  t h e  

' g r a d i e n t '  and a s t e p  s i z e .  
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ALGORITHfrlS AND PROGRAMS 

The iterative solutions are obtained on the Hybrid Com- 

puter Unit using the improved Gradient Technique. Appendix A 

describes the features and certain operations of the Hybrid 

Unit. The analog computer is used exclusively for solving 

the differential equations. The digital computer supplies the 

continuously varying coefficients. The synchronous operation 

of the analog and digital computer units yields the solutions 

to the differential equations. The solutions to the various 

system equations are stored into the memory of the DC and are 

subsequently operated upon to obtain the desired variation in 

the control variables. The entire operation is under complete 

program control of the DC. 

Analog Patching: 

We need to solve three sets of system equations on the 

analog computer. 

The system proper is described by (from (3.1)) 

and 
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As shown in Fig. 6, 'x' is a forward and '2' is a backward 

direction of integration. The independent variable for an 

analog computer is time It1. The AC always integrates forward 

in time 't'. By setting t=z the equations (4.1) are integrated 

backwards in space, 

The two adjoint systems have identical differential 

equations (from (3.23)) I 

a h (x) = - C(X)WX4(X)/ dx 1 

d - dx X 2 (x) = C(X)WX3(X)/ 

(4.3) 

d - h (x) dx 4 
= r (x) X2 (x) + wR(x) X,(x) . 

Q, t With the boundary conditions specified by X(x=O) = X ( 0 )  = [-1,0,0,0] 

the solutions o f  (4.3) give A (x) and with Q, (4.4) 

(4.5) A(x=O) = AR(0) = [O,-1,0,01 t 

R the solutions of (4.3) give X (x) . 
I 

Equations (4.1) and (4.3) have the same form. With the 

transformation 

p1 = Y,(Z) = h4(x), 
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and wi th  t h e  proper  choice of space varying c o e f f i c i e n t s  r ( x ) ,  

c ( x )  and R(x) and t h e  i n i t i a l  cond i t ions ,  t h e  same set  of 

equat ions  y i e l d s s o l u t i o n s  f o r  e i t h e r  y ( z )  X 4 (x)  or h n (x)  , 

The ' B '  ma t r ix  r e f e r r e d  t o  i n  ( 3 . 3 1 )  t u r n s  o u t  t o  be 

B =  

- 
0 0 0 1  
0 0 1 0  
0 1 0 0  
1 0 0 0  - . 

The analog computer patching i s  given i n  Figure 7 .  

A. Algorithm f o r  Improve F i r s t  Order Gradient Technique: 

The flow c h a r t  i n  Fig.  8 d e s c r i b e s  t h e  hybrid program 

f o r  t h e  f i r s t  o rde r  e s t ima t ion  of t h e  c o r r e c t i o n  by t h e  improved 

g r a d i e n t  technique.  A more e l a b o r a t e  d e s c r i p t i o n  i s ' g i v e n  

below. 
. 

Block 1: Prepara tory  S teps  -- The input /output  channels 

of t h e  DC are reset; t h e  l eng th  of i n t e g r a t i o n  i s  s p e c i f i e d ;  

t h e  quantum of t h e  x or z i n t e r v a l  which r e s u l t s  from d i s c r e -  

t i z a t i o n  of t h e  space i s  ca l cu la t ed .  (The func t ions  r ( x )  and 

c ( x )  are approximated by t h e  s t a i r c a s e  approximation.) The 

upper and lower l i m i t s  on t h e  c o n t r o l  v a r i a b l e s  are s p e c i f i e d  

and t h e  a r b i t r a r y  i n i t i a l  p r o f i l e  of t h e  c o n t r o l  v a r i a b l e s  

i s  assumed and loaded i n t o  t h e  memory. 

\ 

Block 2 :  Solving t h e  System Equations on Hybrid Unit  -- 
The DC sets t h e  i n i t i a l  condi t ions  f o r  t h e  i n t e g r a t o r s  of t h e  

AC as given by ( 4 . 2 ) .  The i n i t i a l  va lues  f o r  t h e  i n t e g r a t o r s  

can be obta ined  e i t h e r  by (a) us ing  t h e  DC t o  set a p o t  o r  - . ..--. 
i 

(b) u s ing  DAG ou tpu t  l i n e s .  The i n i t i a l  va lues  of t h e  func t ions  

r ( z )  and c ( z )  are set  up on t h e  DAC. The s t a t i c  Zest may be 
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of 6 G @ f  6uSI and v @ f  vn. 

I 

> 

J 1. Initial settings 
I I 
c .c 

2. Solve system equations I 
Store Check d@ and SI. 

Set new d4 and d52. 

I -,I 4. Evaluate first 
/estimate of 6u@ and 6uQ, ~ 

F I G U R E  8 
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carried out at this time to check the initial conditions. 
L 

The integration routine then follows, The AC solves the 

system differential equations. The equations specified by 

(5.1) are integrated backwards in space. During integration 

the AC receives from the DC the values of the variable co- 

efficients on the DAC and transmits back the values of the 

system variables on the ADC. 

The solutions obtained by integration are converted to 
/ 

digital form and are stored in the memory of the DC. The 

values of the criterion function and the residue for the 

constraining equation are evaluated as, 

52 = y2(z=L) # 

The variation in the criterion function, d$, is chosen so as 

to drive yl(x=O) towards the value of yl(L) such that the 

attenuation approaches unity and dS2 is chosen so thatR con- 

straint is rigorously satisfied by the next set of distributions, 

i.e. 
d52 = - 5 2  ' (or 52 + d52 = 0) 

Block 3 :  Solving the Adjoint Equations on the Hybrid 

Unit -- The operations are identical to the previous block 
except that (a) the initial conditions are specified by (4.4) 

and (4.5) for 1' and X 5 2 .  respectively, and (b) the adjoint 

equations (4.3) are integrated forward in space so that x=t. 

Hence the control distributions are r(x) and c(x). The same 

analog program that is used for the system equations is used 

, -_ - 
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for the adjoint systems with the transformation of variables 

as given by (4-6). 

Block 4: The First Estimate of 6u -- The equations (3.411, 
( 3 , P 3 ) ,  (3.44) and (3.42) yield the estimate of 6u. (W is 

assumed to be an identity matrix.) Adding 6u to u one gets an 

estimate of the new control as u+6u. However, if u lies close 

to or is equal to the limiting values the new control u+6u 

may exceed the limits. Under these circumstances u+6u is 

confined to the limiting values wherever it exceeds the limits 

on the control variables. This amounts to the truncation of 

6u so that u+6u lies within the specified limits (see Fig. 10). 

The estimated new control is monitored at this point to 

check if it exceeds the bounds and truncated if necessary. 

In the case of the unimproved gradient technique, the program 

branches back from here to block 2 and starts the new iteration 

loop. 

It is observed that after the control variables reach 

the liriliting values and start getting truncated, the subsequent 

iterations improve Cp but cause S2 to diverge instead of converging 

to zero. It does not pay (in terms of convergence) to let R 

diverge too much. It becomes necessary to set a limit for 

IS21 and monitor it at every iteration. 
Whenever S2 diverges and exceeds the limit, only R 

correction is applied during the iteration by assuming 6u'=O 

in equation (3.42). Thus / 

R R  6u = v 6u 
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during such iterations. This procedure drives R close to zero 

without any regard to the value of 9. When In[  is driven 

sufficiently below the limiting value the imposed restriction 

'6u'=O' can be removed and one can seek both $I and .Q corrections 

simultaneously. 

So far we have not said anything about what values the 

elements of weighting matrix W should have. The matrix W has 

to be positive so as to satisfy the strengthened Legendre 

necessary condition for the accessory problem. Normally W 

is chosen to be an identity matrix. 

determines the shape of 6u. 

function' or the 'influence function' for the improvement (see 

equation (3.38) and ( 3 . 3 9 ) ) .  If we define u (x) as the 

optimal distribution of scalar u(x)., the variation needed to 

reach the optimal distribution from u(x) will be (uopt-u). 

For various values of x the values of HU(x)/(u (x)-u(x)) 

may turn out to be very different. The control u(x) may be 

already close to the optimal profile in the most sensitive 

In such a case HU solely 

Hu is also the 'sensitivity 

opt 

opt 

regions and farther away in the least sensitive regions. The 

matrix W(x) can be used in such cases as a Compensating factor. 

The matrix 

w- 
c -  M 

0 

has been found to be helpful in the present case / 

(4.7) 

The choice 

of W was governed by the sensitivity. 
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However, once 6u starts g e t t i n g  t runca ted  a t  t h e  boun- 

daries, w e  face a d i f f e r e n t  type of  convergence problem. I n  

order  t o  g e t  a b e t t e r  understanding we will first  cons ider  a 

s impler  analogy. 

L e t  $J = $J(x,,x,) be t h e  c o s t  func t ion  of scalars x1 and x2. 

I I- .& 

Fig.  9 shows t h e  contours  of t h e  leve l  l i n e s  f o r  cons t an t  

$J i n  space (xl,x2). The v a r i a b l e s  x1 and x a r e  bounded. We 2 
have t o  seek a minimum of 4. L e t  xo = (xi,x.!j) be an a r b i t r a r y  

s t a r t i n g  po in t .  I n  t h e  g r a d i e n t  technique one seeks t o  move i n  

t h e  d i r e c t i o n  of t h e  nega t ive  g rad ien t  - V @  which i s  normal t o  

t h e  l e v e l  l i n e  @=ko a t  xo. The s t e p  s i z e  i s  est imated from 

t h e  d e s i r e d  improvement d@.  I f  xo i s  c l o s e  t o  t h e  boundary of 

x1 or x 

p a s t  t h e  boundary a s  shown i n  Fig. 9 .  One has  t o  ' t r u n c a t e '  

t h e  s t e p  i n  t h e  nega t ive  g r a d i e n t  d i r e c t i o n  may go 2 

t h e  s t e p  a t  x' which i s  a p o i n t  on t h e  boundary. I t  is  

apparent  t h a t  from t h i s  p o i n t  on, t h e  s t e p  i n  t h e  d i r e c t i o n  of 

t h e  nega t ive  g r a d i e n t  w i l l  be t runca ted  i n  t h e  x2 d i r e c t i o n .  

The t runca ted  s t e p  w i l l  y i e l d  much less improvement than t h e  

s t i p u l a t e d  d$. This  s e r i o u s l y  a f f e c t s  t h e  convergence. 
/ 
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It is obvious from the figure that the best direction to 

follow is 

i.e. to keep moving along the boundary x2 = x ~ ~ .  

Block 5: Revised estimate of 6u -- Let us consider the 
situation shown in Fig. 10 where u is a scalar function. A 

The M' part of u lies on the boundary um and a part lies on u 

variations 6u' and 6uR are the components obtained as described 

in Block 4. The variation 6u is the first estimate. However 

after truncation it reduces to But. It is apparent that a . 
large section of 6u -- shown hatched -- was counted upon to 
make substantial contribution towards the variations d$ and 

dR, but is now ineffective. The composition of 6u' in terms 

of 6u$ and 6uR cannot be estimated. Since 6u' affects dR, 

and 

6U' 

the 

R 6u affects d$, the corrections d$ and dR resulting from 

are not only small but are at times far different from 

stipulated values. 
\ 

This can be remedied, to a large extent, by giving due 

consideration to the effect of truncation in the revised 

estimate of 6,. This is effected by using 16u1] or ( 6 ~ ' ) ~  as 

a weighting factor. Thus we have 

Wherever the first estimate 6u gets truncated, 6u' is 



35 

I 

F I G U R E  10 
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equal  t o  zero (see Fig.  10). 

w i l l  a lso be zero  wherever t h e  f irst  estimate 6u is t runca ted .  

Thus, t h e  second estimate of t h e  s t e p  s i z e s  v4  and v' i s  

obtained by reshaping 6uQ and 6u' so  t h a t  t h e  second estimate 

The new estimates 6u4' and 6u" 

of t h e  v a r i a t i o n  6u i s  confined,  as f a r  as p o s s i b l e ,  t o  t h e  

reg ion  where t h e  p o s s i b i l i t y  of t h e  v a r i a t i o n  e x i s t s .  

Revised va lues  of v4 and V~ may be obta ined  from (3.43) 

and (3.44) and t h e  new estimate of 6u i s  given by 

6u = v46u4' + v fi 6u Q l  

E f f e c t i v e l y  w e  use a W f a c t o r ,  so t h a t  

0 

0 

where 6 r '  and 6 c '  are t runca ted  f i r s t  e s t i m a t e s  from Block 4 .  

The l a s t  p a r t  of t h i s  ope ra t ion  is  checking and t r u n c a t i n g  

u+6u. Then t h e  program goes back t o  Block 2 f o r  t h e  next  

i t e r a t i o n  cycle .  
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COMPUTER SOLUTIONS 

The use of the Hybrid Computer was considered to be best 

suited for this problem due to the following reasons: 

(i) The Analog computer can solve the differential 

equations without discretization in 'x' space. 

(ii) The Digital computer with the help of D to A converter 

can generate arbitrary shapes of distributions and feed them 

to the Analog computer to obtain the representation of a non- 

uniform transmission line. 

(iii) The storage facility and the computational capa- 

bility of the Digital computer can be utilized to evaluate the 

estimates of 6u. \ 

Appendix A describes the Hybrid Computer operations. As 

a particular case of the oscillator problem we chose the 

following set of values for the numerical analysis. 

The ratio of rbl/rm and cM/cm is chosen to be 10. The 

limiting values are chosen to be 

M r M WC .% 

wc = .08 - - 
rm m 

This choice is governed by the limitations of the dynamic range 

of the system. The ADC, DAC, and analog units cannot handle 

quantities larger than unity (10 volts), and for the values of 

the order of ,0010 there is a serious noise problem. However, 

a large spectrum of values can be handled by transforming the / 

independent variable (thus effectively changing the scale) 
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provided the dynamic range is not too large. 

The quantum of the interval is chosen to be 1/10 unit. 

Thus we have 189 discrete intervals for length of 18.9 units. 

The functions r(x) and wc(x) are represented by stepwise approxi- 

mation. At the start of each interval the value of r(x) or 

wc(x) at that point is provided on DAC and held constant until 

the start of the next interval. The system variables are 

sampled'on the ADC at the end of each interval. 

values are fed to the DC through ADC while the integration 

continues uninterrupted. 

The sampled 

The first order unimproved gradient technique with W 

chosen as an identity matrix was tried first. Different dis- 

tributions such as uniform distribution, ramp distribution, 

or exponential distribution were used as an initial guess. 

The problem of sensitivity was immediately felt since they did 

not converge to a single distribution. 

The unimproved first order technique with W as an identity 

matrix indicated that with different initial guesses the 

iterations moved the distributions in the same general direction 

but the sensitivity problems prevented them from converging 

to a single distribution. Also, the simultaneous convergence of 

Cp and Ci was affected when the 6u estimates were truncated. 

(see Appendix B) The algorithm described in Chapter 4 for the 

improved&first order technique is an attempt to correct these 

defects. The method seems to work satisfactorily. 
/ 

The unimproved first order technique with W as an identity 
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matrix is used until the improvement in $I becomes small. 

Then we branch to the method using ( 4 . 9 )  as weighting factor, 

which is the improved gradient technique. 

The optimal distributions obtained from the computer are 

quite noisy. 

Fig. 11 is the noisy output from the computer. Fig. 12 gives 

(The reasons are described in the next chapter.) 

the filtered version. The rest of the figures presented here 

are the filtered versions of the computer output. 

In order to check the dependence of the final distributions 

on the initial guess, two widely different sets of distributions 

are selected as an initial guess. 

the line is 14. 

In each case the length of 

Case 1: The initial distributions are 

r(x) = wc(x) = 0.325 

The final distributions are given in Fig. 12. 

Case 2: The initial distributions are 

r(x) = 0.8 - (0.8-0 L 0 8  ) X  

)X 
0.8-0.08 

L wc(x) = 0.08 -i- ( 
- \  

The final distributions are given in Fig. 13 

The comparison of the results recorded in Fig. 12 and 

Fig. 13 shows that in both cases the distributions converged 

to the same set of final distributions. This indicates that 

the algorithm CieriVed here is quite insensitive to the choice 

of the initial distributions. 

On the optimal switching curve in between the boundaries, / 

Hu should be identically zero. The observed values of H at 
U 
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the start of the iteration and at the end differed by a factor 

of.about 1000 indicating that we are very close to the optimum. 

Fig. 14 through 18 give the results for different assumed 

length 'L'. In'each case the starting distributions are taken 

to be uniform and inductance R(x)=O. Table I summarizes 

these results. 

For the second set of results we assumed different values 

for inductance R(x) . As stated before R(x) was assumed to be 

non-controllable and constant. 

Figures 19 through 21 present the optimal r(x) and c(x) 

for different R(x). Table I1 summarizes these results. 
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Length L -f 

O p t i m u m  a t t e n u a t i o n  as a f u n c t i o n . o f  the  t o t a l  
l e n g t h  of a l i n e .  

FIGURE 18a 
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ERRORS AND LIMITATIONS 

A. Scale and Range 

The analog computer is a 10 volt machine. The DAC is a 

10 volt unit with 14 bits plus a sign bit and the ADC is a 10 

volt unit with 13 bits plus a sign bit. Thus the lowest 

voltage level that the setup can handle is about 2 mv, as 

decided upon by the ADC. Any voltage level below 2 mv is 

interpreted as a zero by the ADC and the voltage levels above 

10 volts are either rejected by the converters or cause 

saturation of the amplifiers. Thus the dynamic range of the 

setup is 5 ~ 1 0 ~ .  

B. Noise 

(i) Random Noise -- The individual component of the 
system has a specified noise level as given below. 

ADC - - the noise level is +1 bit, equivalent to about +2 mv. 

- DAC - the noise level is negligible as compared to that 
of the ADC and AC. 

Analog Computer - the nonlinear multipliers have the 
highest noise level. It is specified to be 53 mv. However, 

when the transmission line equations were integrated a number 

of times using the entire Hybrid setup, for the same distri- 

butions r(x) , c(x) and R(x) the end point values of the voltage 

V1(x) were found to be repeatable within 20 mv. 

(ii) Quantization Noise -- The ADC while reading the 
/results from the Analog Computer quantizes them. The random 

noise is superposed on top of this quantized signal. In the 
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algorithms these readings are operated upon and amplified -- 
especially during the last part of the iteration -- several 
times. 

cause a noise level in the range of a hundred mv. Figures 12 

Thus 2 mv quantization step and about 6 mv noise can 

through 21 are the smoothed out versions of the computer outpu t. 

Fig. 11 is one of the original computer output. 

The noise problem becomes more serious with the complicated 

algorithms involving large numbers of algebraic operations. 

For this reason, the algorithm should be as simple as possible. 

C. Limitations of the Method 

H is a smoothly varying- function. Thus every variation U 

in the control has a continuous first derivative in the open 

region. If the optimal distribution has a discontinuous first 
. 

derivative and the initial estimate does not, the solution will 

not converge on to the optimal. Also if the initial guess has 

a discontinuous first derivative we can never get rid of this 

discontinuity in the open region. In the present case the 

uniform, ramp, exponential distributions all converged to the 

same distribution. However, when the initial guess was a bang 

bang type of distribution, the final distribution retained 

the kinks. 

r 

, 
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CONCLUSIONS 

1. With the bounds on resistance and capacitance decided 

upon by the fabrication limitations, and the length prespecified, 

the optimum 180' phase shift network with minimum attenuation 

turns out to have distributions of r and c that have limiting 

values with the singular switching curves. 

The attenuation of unity, as projected by Johnson and cal- 

culated from Edson's results is not realizable due to the 

physical limitations. 

The optimum attenuation is not far better than what can 

be achieved by exponential distributions given a free choice 

of length. 

2. It is possible to obtain a solution to a 'singular' 

optimization problem by using the Improved Gradient Technique 

developed here. 
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APPENDIX A 

Hybrid Computer 

This is a combination of the Analog and Digital computers. 

We have EA1680 analog conputer and ISM7700 digital computer 

with input-output subchannels for the transfer of the infor- 

mation. In order to transform this setup into a hybrid unit, 

we designed and built the interface. Fig. A.l shows the flow 

diagram for the hybrid unit. 

.(i) Digital computer: The DC contains the multiplexor 

channel, channel B. It permits the attachment of different 

data acquisition and data distribution devices to the processor 

of the DC. The input subchannels of channel B are capable of 

recording the logic levels -- true or false -- of the incoming 
lines and the output subchannels can send the desired logic' 

levels on the output lines. The operation of channel B is 

controlled by the central processor unit. 

(ii) Interface: The interface provides the medium of 

communication between the AC and DC. It is essentially a 

translator unit. The function of the various sections of the 
\ 

interface are described below. 

Operation Control of the AC: The operation of the AC is 

controlled by the coded logic signals sent from the DC. The 

interface converts the inpClogic levels into the appropriate 

output logic levels and also generates the clock pulses required 

for certain operations. 
- , -.-.. 

/ 
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opera t ions  c o n t r o l l e d  are as fol lows:  

Operate ( I n t e g r a t e )  , Hold , I n i t i a l  cond i t ion ,  etc. 

Analog component s e l e c t i o n  f o r  readout  or p o t s e t ;  

e.g., Amplif ier ,  Trunk, Po t ,  etc. 

T i m e  cons t an t  se l -ec t ion ,  e.g. Seconds, Mil l iseconds,  etc. 

D i g i t a l  mode s e l e c t i o n ,  e.g. S e t ,  C l e a r  (Reg i s t e r s ,  

Counter ) ,  etc. 

Dig i ta l  c lock rate s e l e c t i o n  

S e l e c t i n g  t h e  address  of t h e  analog component 

S e t t i n g  a p o t  c o e f f i c i e n t  

AC Monitor: The coded l o g i c  s i g n a l s  coming from the  

monitor of t h e  AC are t r ansmi t t ed  t o  DC. The DC compares t h e  

c o n t r o l  o rde r  wi th  the  monitor s i g n a l  t o  f i n d  o u t  whether t h e  

execut ion i s  proper.  

Logic S igna ls :  Ce r t a in  dec i s ions  made by t h e  DC regard ing  

t h e  s t a t u s  of t h e  program under execut ion are t r ansmi t t ed  

through i n t e r f a c e  t o  t h e  l o g i c  t runks .  These s i g n a l s  can be 

used t o  e f f e c t  a change i n  t h e  AC program. 

Sense and I n t e r r u p t :  The s t a t u s  of t h e  AC program such 

as a comparator ou tpu t  is  conveyed t o  t h e  i n t e r f a c e  on t h e  sense  

l i n e s .  The i n t e r f a c e  i n  t u r n  t r ansmi t s  t h e  message t o  t h e  DC. 

The i n t e r r u p t  l i n e s  are used f o r  conveying t h e  undes i rab le  

s t a t u s  of ope ra t ion  such as overload. The AC i s  programmed t o  

i n t e r r u p t  t h e  ope ra t ion  under such cond i t ions .  

D i g i t a l  t o  Analog Converter: This  i s  an e i g h t  channel 

ser ia l  i n p u t ,  p a r a l l e l  ou tput  u n i t .  The c o n t r o l  s i g n a l  from 
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the AC initiates the conversion of the digital data on the 

i n p u t  lines from the DC into the analog signal. 

signal appears on the channel selected by the control word 

The analog 

from the DC. The output channels are connected to the DAC 

trunks on the AC. 

Analog to Digital Converter: This is a 24  channel parallel 

input serial output unit. It receives the analog input from 

the ADC trunks. The control word from the DC selects the 

channel and initiates the conversion. The digital output is 

transmitted to the DC. 

(iii) Analog Computer: The AC can be divided into 

three sections. 
i 

Analog Section: It consists of the analog components 

such as integrators, summing amplifiers, track b store amp- 

lifiers, etc. 

and DAC trunks supply the analog signals to this section. 

ADC trunks receive the inputs from this section 

Logic Section: This section contains the logic elements 

such as gates, counters, registers along with the clock out- 

puts and control inputs for certain analog components. The 

sense and interrupt trunks receive the inputs from this section. 
\, 

The logic trunks appear in this section. 

Operation Control: This section controls the operation 

of both the analog and logic sections. It controls all of the 

operations listed under "Operation Control of the AC" in the 

description of the interface. It receives the coded control 

wordl either from pushbuttons or from the interface. It also 
. ..- . - 

1 
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genera tes  t h e  monitor s i g n a l s .  

Hybrid Operations 

The t w o  important  l i n k s  i n  t h e  hybrid s e t u p  are t h e  DAC 

and t h e  ADC. 

DAG: The ou tpu t  subchannel of t h e  DC t r a n s m i t s  t h e  
- .  

d i g i t i z e d  va lue  of t h e  v a r i a b l e .  The load command from t h e  

DC loads  t h e  w o r d  i n t o  t h e  r e g i s t e r s  of t h e  DAC. However, 

un le s s  t h e  DAG channel r e c e i v e s  t h e  enable  command t h e  analog 

ou tpu t  does n o t  appear a t  t h e  ou tpu t  t e rmina l  of t h e  DAC. The 

previous va lue  i s  r e t a i n e d  a t  t h e  ou tpu t  u n t i l  a new enable  

command is  received.  

ADC: The DC selects t h e  ADC channel by c o n t r o l l i n g  t h e  

mul t ip lexor  switches.  The conversion of t h e  analog s i g n a l  on 

t h i s  p re se l ec t ed  channel i s  i n i t i a t e d  by t h e  s t a r t  pulse .  On 

completion of t h e  conversion a pu l se  i s  s e n t  t o  t h e  i n p u t  sub- 

channel of t h e  DC. On rece iv ing  t h i s  pu l se  t h e  i n p u t  subchannel 

r e g i s t e r s  t h e  d i g i t a l  ou tpu t  of t h e  ADC. This  i s  subsequently 

- 

t r a n s f e r r e d  t o  t h e  memory of t h e  DC. 

S e t t i n g  up i n i t i a l  cond i t ions  and s t a t i c  test:  

The ope ra t ion  c o n t r o l  subrout ine  sets t h e  AC i n  t h e  "set 

pot"  mode. The proper address  word selects t h e  d e s i r e d  servo  

c o n t r o l l e d  pot .  The value r e g i s t e r  i s  loaded and t h e  servo  

s ta r t  p u l s e  t r ansmi t t ed  from t h e  DC. The monitor subrout ine  

checks i f  t h e  proper  po t  has been s e l e c t e d  and t h e  ope ra t ion  

completed. ,Thus t h e  i n i t i a l  condi t ion  -IC- i s  e s t a b l i s h e d  wi th  

t h e  h e l p  of servoset po t s .  
/ 
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The AC is  then  d r iven  i n t o  t h e  I C  mode and ou tpu t s  of 

a m p l i f i e r s  are read  on t h e  ADC . This  gives t h e  s ta t ic  test. 

I n t e g r a t i o n  rou t ine :  A subchannel of t h e  DC i s  used f o r  

s t a r t i n g  and te rmina t ing  t h e  i n t e g r a t i o n  opera t ion .  S e l e c t i o n  

of t h e  counter  SC t u r n s  t runk  "00" (Fig.  A.2) on and t h e  AC 

goes i n t o  "opera te"  mode thus  s t a r t i n g  i n t e g r a t i o n .  A t  t h e  

same t i m e ,  t h e  AC counter  s tarts counting AC c lock  pu l ses  and 

g ives  t h e  ou tpu t  as i n  F ig .  A.2. The monostable m u l t i v i b r a t o r  

(Fig.  A.3) genera tes  a pu l se  every 1000 Vsec. which genera tes  

a DC i n t e r r u p t .  The DC counts  t h e  number of such i n t e r r u p t s .  

As soon as t h e  DC counts  a s p e c i f i e d  number of p u l s e s  i t  

deselects t h e  subchannel te rmina t ing  t h e  i n t e g r a t i o n  opera t ion  

and d r i v i n g  t h e  AC i n t o  t h e  I C  mode. The p u l s e  from t h e  mono- 
. 

s t a b l e  m u l t i v i b r a t o r  a l s o  starts t h e  conversion and enables  

t h e  DAC channels.  

Before t h e  s t a r t  of i n t e g r a t i o n :  

(i) AC counter  i s  reset, 

(ii) AC c lock  mode i s  selected (such as 1 0  kc,  1 0 0  kc,  

1000  kc)  t 
, 

(iii) AC t h e  cons tan t  i s  s e l e c t e d  (such as seconds, 

mi l l i seconds ,  e t c . ) ,  

( i v )  The va lues  of DAC func t ions  for  t h e  second i n t e r v a l  

are loaded- 

(For t h e  o s c i l l a t o r  problem t h e  clock mode w a s  1 0 0 0  kc 

and t h e  t i m e  cons t an t  w a s  0 . 1  sec.) 

Now t h e  i n t e g r a t i o n  i s  s t a r t e d  by s e l e c t i n g  t h e  counter  SC. 

Fig.  A . 4  d e s c r i b e s  t h e  flow of events .  
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As t h e  f i r s t  counter  p u l s e  comes i n ,  it enables  a l l  t h e  

DAC channels.  Thus, va lues  of a l l  t h e  c o - e f f i c i e n t s  f o r  t h e  

second i n t e r v a l  are made a v a i l a b l e .  All t h e  t r a c k  and s t o r e  

a m p l i f i e r s  go i n t o  s t o r e  mode thus  preserv ing  t h e  va lues  a t  t h e  

i n s t a n t  of t h e  counter  pu lse .  The DC now selects and reads  

the ADC channels one by one. This  i s  followed by serial  loading 

. 

of DAC channels wi th  t h e  va lues  f o r  t h e  next  i n t e r v a l .  This  

completes t h e  ope ra t ions  f o r  one i n t e r v a l  and t h e  DC w a i t s  

for  next  counter  pu lse .  The process  r e p e a t s  u n t i l  t h e  counter  

SC i s  dese l ec t ed .  
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APPENDIX €3 

For a system represented by 

d dx y = f ( Y ? U , X )  ? 

with criterion function Q, (y(0) ly(L) ) )  

ship between a variation in Q, and the variation ' 6u '  in control 

the functional relation- 

u is obtained as (ref. equation ( 3 . 3 7 ) )  

dQ, = JL HU6udx . 
0 

Let us assume that Q, is to be maximized. In the Gradient 

Technique the hope that the iterations would converge is 

based on obtaining a positive dQ, as a result of every iteration 

cycle. Thus we can stipulate three necessary conditions for 
. 

(i) Sgn 6u(x) = Sgn H U ( x )  , for a finite length and - 

6u(x) = 0 for the rest of x. This assures dQ, 2 0 I 03.2) 

(iii) IL < ~ U ( X ) , ~ U ( X )  > dx << 1 . 
0 

\ 

This assures that the variation u ( x )  is small enough to 

justify the first order approximations made in the derivation 

of ( 3 . 3 7 )  

Let us define urn - u ( x )  = 6u (x) and uM - u(x) = 6uM(x).  m 

The bounds on 6u(x) can now be specified as 
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Since u(x) is an admissible control vector 

Let 6u(x) be any function that satisfies the first and 

the last condition stated in (B.2). (See Fig. B . l )  The 

function 6u can be expressed as a sum of a function 6u and 

6un such that 
P 

6u (XI 1 0 I P 

6u = 6u + 6un P and 

The variations 6u and 6un also satisfy the first and the 
P 

last conditions stated in ( B . 2 ) .  The functions 6u (x) and 

6un(x) can be further divided so that 
P 

6un(x) = 6una(x) + 6unt(x) I 
, 

where 6u (x) and 6unt(x) are the truncated sections of 6u 
Pt P 

and 6un respectively. 

We have Sgn 6u (x) = Sgn 6u (x) P Pa 

and Sgn 6un(x) = Sgn 6una(x) 

Thus 6u (x) and 6una(x) satisfies the first and the last 
Pa 

/ 
' condition stated in ( B . 2 ) .  They also satisfy the second 

condition (See Fig. B.l). 



6.6 
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The same is true about 6ua where 

6U.p &= , bu (XI + 6una(x) (B. 3)- Pa 
The function 6ua(x) is a truncated part of 6u(x). 

truncation does not violate the conditions for convergence of 

Hence the 

the Gradient Method. 

However with more than one target function, such as and 

R, 6u is composed of more than one component such as 

Q Q  6u = vQ,u@ 4- w 6u 

and the functional relationship is (See I ( 3 . 4 3 )  . 
$ J L $ J $ J  Q L $ J Q  d@ = v I HU6u dx + v I HU6u dx 
0 0 

R In such a case 6u affects d$J (and 6u9 affect dfi) . The 

condition (i) holds true for the first term on the R.H.S. of 

equation ( B . 5 ) .  However, the second term does not necessarily 

satisfy the condition (i) . Besides, 6u @ and 6u' are not trun- 

cated separately. The truncation of 6u does not provide any 

information as to how the truncation affects the components 

64 and 6u' . Thus the argument about convergence breaks down. 
It is observed during the numerical calculations on com- 

puter that before the control distributions reach the limiting 

values the first order gradient technique (using first 

estimate of 6u) yields improvement in both @ and fi simultaneously. 

However, once the control variables reach the boundary only 

one of the two improves and the other starts deteriorating. 

/Thus a simultaneous convergence breaks down. 



TABLE 1 

Uniform line inductance 
. wR(x) 

0 
.02 

.05 

.10 

r 

L 1 i I 

Optimum attenuation 
- 

5.6 
4 . 2  

2.15 
1.15 

- 

TABLE 2 

Total length of a line 'L' = 140 

In each case 0.8 s r ( x ) ,  wc(x) I 0.08. 
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